Kähler Metrics of Constant Scalar Curvature on Hirzebruch Surfaces

نویسنده

  • Hiroyuki Kamada
چکیده

It is shown that a Hirzebruch surface admits a Kähler metric (possibly indefinite) of constant scalar curvature if and only if its degree equals zero. There have been many extensive studies for positive-definite Kähler metrics of constant scalar curvature, especially, Kähler Einstein metrics and scalar-flat Kähler metrics, on existence, uniqueness, obstructions, and relationships with other notions, for example, certain stabilities of polarized Kähler manifolds (e.g., Donaldson [7] and references therein). An indefinite counterpart of the notion of Kähler metrics of constant scalar curvature is defined in a natural way similar to that in the positive-definite case, and includes the notions of indefinite Kähler-Einstein metrics and scalarflat indefinite Kähler metrics. The existence problem for such metrics has its own task in the geometry of pseudo-Riemannian manifolds. The lowest real dimension of an indefinite Kähler manifold (M, g) must be four and the signature of the metric g must be (2, 2). Matsushita [20] studied the existence problem for metrics of signature (2, 2), from a point of view of that for fields of two-planes. Indefinite Kähler metrics of signature (2, 2) also appear in mathematical physics. Motivated by the work of Ooguri-Vafa [23] on string theory, Petean [24] studied the existence problem for indefinite Kähler Einstein metrics on compact complex surfaces and obtained a complete classification of compact complex surfaces that admit Ricci-flat indefinite Kähler metrics. On the other hand, concerning the existence of scalar-flat indefinite Kähler metrics on compact complex surfaces (or equivalently, self-dual Kähler metrics of neutral signature), several results have been known. For example, many scalar-flat (nonRicci-flat) indefinite Kähler metrics have been constructed explicitly on the product S × S of two two-dimensional spheres, by an indefinite analogue of LeBrun’s ansatz (Tod [26], Kamada [14]). By construction, each of these metrics has an obvious (Hamiltonian) S-symmetry. Conversely, it has been shown in [14] that a compact scalar-flat indefinite Kähler surface (more generally, a ∗2000 Mathematics Subject Classification: 14J26, 53C55, 53C50. †

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on Kähler Metrics of Constant Scalar Curvature on Ruled Complex Surfaces

In this note we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. Dedicated to Professor Paul Gauduchon on his 60th birthday.

متن کامل

(kähler-)ricci Flow on (kähler) Manifolds

One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...

متن کامل

Blowing up Kähler manifolds withconstant scalar curvature, II

In this paper we prove the existence of Kähler metrics of constant scalar curvature on the blow up at finitely many points of a compact manifold which already carries a Kähler constant scalar curvature metric. Necessary conditions of the number and locations of the blow up points are given. 1991 Math. Subject Classification: 58E11, 32C17.

متن کامل

Polarized 4-Manifolds, Extremal Kähler Metrics, and Seiberg-Witten Theory

Using Seiberg-Witten theory, it is shown that any Kähler metric of constant negative scalar curvature on a compact 4-manifold M minimizes the L-norm of scalar curvature among Riemannian metrics compatible with a fixed decomposition H(M) = H ⊕ H−. This implies, for example, that any such metric on a minimal ruled surface must be locally symmetric.

متن کامل

Fibrations with Constant Scalar Curvature Kähler Metrics and the Cm-line Bundle

Let π : X → B be a holomorphic submersion between compact Kähler manifolds of any dimensions, whose fibres and base have no non-zero holomorphic vector fields and whose fibres admit constant scalar curvature Kähler metrics. This article gives a sufficient topological condition for the existence of a constant scalar curvature Kähler metric on X. The condition involves the CM-line bundle—a certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009